Solar Radiation Projections of Cmip5 Models for South of Brazil

Authors

DOI:

https://doi.org/10.25034/ijcua.2018.36xx71

Keywords:

Climate Change, Solar Radiation, Energy Utilization

Abstract

The most critical factors in the acceleration of climate and environmental changes are related to industrial development and consequently to an increase in the demand for electricity. Looking for measures that minimize impacts on the environment, alternative energy sources are gaining more and more space in the Brazilian energy matrix. Brazil presents a great solar potential for the generation of electric energy, so the knowledge of solar radiation and its characteristics are fundamental for the study of energy use. Due to the above, this article aims to verify the climatic variability corresponding to the variations in solar radiation patterns, in the face of climate change scenarios. The database used in this research is part of the Phase 5 Intercomparison of Matching Models (CMIP5).  It is important, first of all, to determine its availability in order to enable the use of solar radiation as a source of energy in a given location and/or region. The climatic projections, based on the pessimistic scenario, in a 75-year period (2026-2100) showed a fall in solar radiation in all of Rio Grande do Sul, reaching 12% in the eastern region of the state. A concern with the factors that influence the pessimistic perspectives of this scenario, as it may affect a possible production of electric energy from solar radiation.

Downloads

Download data is not yet available.

References

Buriol, G. A., Estefanel, V., Heldwein, A. B., Prestes, S.D., Horn, J. F. C. (2012). Estimativa Da radiação solar global a partir dos dados de insolação, para Santa Maria - RS. Ciência Rural, 42, 1563-1567,

Freitas, S. S. A. (2008). Dimensionamento de sistemas fotovoltaicos..Bragança: ESTIG, Dissertação de Mestrado em Engenharia Industrial.

Gross, J. A. (2015). Índice de Anomalia de Chuva (IAC) dos municípios do Rio Grande do Sul afetados pelas estiagens no período de 1991 a 2012. Dissertação de Mestrado. Universidade Federal de Santa Maria.

Lima, R. A. (2012) .A produção de energias renováveis e o desenvolvimento Sustentável: uma análise no cenário da mudança do clima. Energy Law in Brazil, 5 (4).

Le Treut, H., R. Somerville, U. Cubasch, Y. Ding, C. Mauritzen, A. Mokssit, T. Peterson And Prather, M. (2007). Historical Overview of Climate Change. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

Silveira, S. S., Souza Filho, F. Martins, E. S., Oliveira, J. Costa, A., Nobrega, M. Souza, S. A. (2016). Climate change in the São Francisco river basin: analysis of precipitation and temperature. RBRH, 21 (2), 416 - 428

Sousa, M. M. (2010). Comparação Entre Ferramentas de Modelagem Unidimensional e Quasi-Bidimensional, Permanente e Não- Permanente, em Planejamento e Projetos de Engenharia Hidráulica. Rio de Janeiro, Brazil: UFRJ/COPPE.

Souza, E. B. (2004) .GrADS – Grid Analysis and Display System Fundamentos e rogramação Básica. Universidade Federal do Pará. Retrieved from http://www.dca.iag.usp.br/www/material/ritaynoue/aca522/referencias/apostilagrads.pdf >.

Van Vuuren, D. P.; Edmonsds, J.; Kainuma, M.; Riahi, K.; Thomsonm, A.; Hibbard, K.; Hurtt, G. C.; Kram T.; Krey, V.; Lamarque, J. F.; Masui, T.; Meinshausen, M.; Nakicenovic, N.; Smith, S. J.; Rose, S. K. (2011). The representative concentration pathways: an overview. Climatic Change, 109,5-31

Downloads

Published

2017-12-28

How to Cite

Bierhals, E. E., Pereira, F., Brazil, C., & Rossini, E. (2017). Solar Radiation Projections of Cmip5 Models for South of Brazil. Journal of Contemporary Urban Affairs, 1(3), 1–6. https://doi.org/10.25034/ijcua.2018.36xx71

Most read articles by the same author(s)