Impact of Urban Heat Island on Formation of Precipitation in Indian Western Coastal Cities


  • Ph.D Rachana Patil Department of Architecture and Planning, Research Scholar, Visvesvaraya National Institute of Technology, India
  • Asst. Prof. Dr. Meenal Surawar Department of Architecture and Planning, Faculty of Architecture, Visvesvaraya National Institute of Technology, India



Urban Heat Island, Population Density, Precipitation Patterns, Coastal Urbanization, Climate Change, Western Coastal Cities


Rapid urbanization is leading to a drastic hike in anthropogenic activities and urban surface alterations. As a result, there are many repercussions, one of them being higher temperatures in urban areas when compared to rural areas. This phenomenon is termed Urban Heat Island (UHI). The impacts of urban surface characteristics, climate, and population density on UHI have been extensively studied. However, the influence of UHI on the local climate remains elusive. Relatively few studies demonstrate interrelation between UHI, population density, and unanticipated precipitation events. Therefore, it is important to comprehend the connection as it can impact extreme temperature events like heat waves and unanticipated precipitation events like flash flooding. The objective of this study is to investigate the association between UHI, population density, and precipitation in the summer and winter seasons in Indian Western Coastal Cities. To comprehend this association, a hypothesis test employing the Spearman rank correlation coefficient is conducted for 1991, 2001, 2011, and 2021. From the study, it is found that in summer, the surface temperature is directly proportional to population density and inversely proportional to precipitation. In winter the contrary relation is observed. This study also provides the seasonal variation and temporal evolution of the correlation among the parameters. This research will aid in making informed decisions for urban planning and addressing climate change.



Download data is not yet available.


Ackerman, B., Changnon Jr, S. A., Gatz, D. L., Grosh, R. C., Hilbers, S. D., Huff, F. A., Mansell, J. W., OCHS Ill, H. T., Peden, M. E., Schickedanz, P. T., Semonin, R. G., Vogel, J. L., Changnon, S. A., Dzurisin, G., Hilberg F A Huff, S. D., Ochs, H. T., Semohin, R. G., & Vogel Summary, J. L. (1978). Summary of METROMEX, Volume 2: Causes of Precipitation Anomalies Title: Summary of METROMEX. In METROMEX, Illinois State Water Survey.

Arifwidodo, S., & Chandrasiri, O. (2015). Urban heat island and household energy Consumption in Bangkok, Thailand. Energy Procedia, 79, 189–194.

Bentley, M. L., Ashley, W. S., & Stallins, J. (2010). Climatological radar delineation of urban convection for Atlanta, Georgia. International Journal of Climatology, 30(11), 1589–1594.

Biggerstaff, M. I., & Listema, S. A. (2000). An Improved Scheme for Convective/Stratiform Echo Classification Using Radar Reflectivity. Journal of Applied Meteorology, 39(12), 2129–2150.<2129:aisfcs>;2

Bornstein, R., and Lin, Q. (2000). Urban heat islands and summertime convective thunderstorms in Atlanta: three case studies. In Atmospheric Environment, 34(3), 507-516.

Chakravarty, K., Bhangale, R., Das, S., Yadav, P., Kannan, B. A. M., & Pandithurai, G. (2021). Unraveling the characteristics of precipitation microphysics in summer and winter monsoon over Mumbai and Chennai – the two urban-coastal cities of Indian sub-continent. Atmospheric Research, 249, 1-14.

Chakravarty, K., Khandare, S., Kumar, N. V. P. K., Bhangale, R., & Maitra, A. (2021). The interseasonal features of precipitation microphysics over Thiruvananthapuram and Kolkata - the two tropical stations of Indian sub-continent. Journal of Atmospheric and Solar-Terrestrial Physics, 222, 1-11.

Changnon, S. A., Huff, F. A., Schickedanz, P. T., & Vogel, J. L. (n.d.) (1977). Summary of METROMEX, Volume1: Weather Anomalies and Impacts, 1, Bulletin 62.

Chen, H., & Sun, J. (2021). Significant Increase of the Global Population Exposure to Increased Precipitation Extremes in the Future. Earth’s Future, 9(9).

Cui, Q., Ali, T., Xie, W., Huang, J., & Wang, J. (2022). The uncertainty of climate change impacts on China’s agricultural economy based on an integrated assessment approach. Mitigation and Adaptation Strategies for Global Change, 27(3).

Das, D. N., Chakraborti, S., Saha, G., Banerjee, A., & Singh, D. (2020). Analysing the dynamic relationship of land surface temperature and landuse pattern: A city level analysis of two climatic regions in India. City and Environment Interactions, 8, 1-14.

Dissanayake, D., Morimoto, T., Murayama, Y., & Ranagalage, M. (2019). Impact of Landscape Structure on the Variation of Land Surface Temperature in Sub-Saharan Region: A Case Study of Addis Ababa using Landsat Data (1986-2016). Sustainability (Switzerland), 11(8), 1-18.

Dixon, G. P., & Mote, T. L. (2003). Patterns and Causes of Atlanta’s urban heat sland-Initiated Precipitation. Journal of Applied Meteorology, 42(9), 1273–1284.<1273:PACOAU>2.0.CO;2

Gabriel, K. M. A., & Endlicher, W. R. (2011). Urban and rural mortality rates during heat waves in Berlin and Brandenburg, Germany. Environmental Pollution, 159(8–9), 2044–2050.

Ganeshan, M., Murtugudde, R., & Imhoff, M. L. (2013). A multi-city analysis of the UHI-influence on warm season rainfall. Urban Climate, 6, 1–23.

Golechha, M., Shah, P., & Mavalankar, D. (2021). Threshold determination and temperature trends analysis of Indian cities for effective implementation of an early warning system. Urban Climate, 39, 1-15.

Gu, Y., & Li, D. (2018). A modeling study of the sensitivity of urban heat islands to precipitation at climate scales. Urban Climate, 24, 982–993.

Habeeb, D., Vargo, J., & Stone, B. (2015). Rising heat wave trends in large US cities. Natural Hazards, 76(3), 1651–1665.

Houze, R. A. (1989, April). Observed structure of mesoscale convective systems and implications for large-scale heating. Quaterly Journal of the Royal Meteorological Society, 115, 425-461.

Hwang, Y. H., Nasution, I. K., Amonkar, D., & Hahs, A. (2020). Urban Green Space Distribution Related to Land Values in Fast-Growing Megacities, Mumbai and Jakarta-Unexploited Opportunities to Increase Access to Greenery for the Poor. Sustainability (Switzerland), 12(12).

Ihadua, I. M. T. J., & Filho, A. J. P. (2021). On Thunderstorm Microphysics under Urban Heat Island, Sea Breeze, and Cold Front Effects in the Metropolitan Area of Sao Paulo, Brazil. Atmospheric and Climate Sciences, 11(03), 614–643.

Jones, B., O’Neill, B. C., Mcdaniel, L., Mcginnis, S., Mearns, L. O., & Tebaldi, C. (2015). Future population exposure to US heat extremes. Nature Climate Change, 5(7), 652–655.

Karsisto, P., Fortelius, C., Demuzere, M., Grimmond, C. S. B., Oleson, K. W., Kouznetsov, R., Masson, V., & Järvi, L. (2016). Seasonal surface urban energy balance and wintertime stability simulated using three land-surface models in the high-latitude city Helsinki. Quarterly Journal of the Royal Meteorological Society, 142(694), 401–417.

Ketterer, C., & Matzarakis, A. (2014). Human-biometeorological assessment of the urban heat island in a city with complex topography - The case of Stuttgart, Germany. Urban Climate, 10(P3), 573–584.

Kotharkar, R., & Surawar, M. (2016). Land Use, Land Cover, and Population Density Impact on the Formation of Canopy Urban Heat Islands through Traverse Survey in the Nagpur Urban Area, India. Journal of Urban Planning and Development, 142(1), 04015003.

Kovoor, R. A., & Panjikaran, S. (2022). Analysis on the Strategy of Urban Space Expansion and Land Resource Management. Journal of Progress in Civil Engineering, 4(1), 45-54.

Leroyer, S., Mailhot, J., Bélair, S., Lemonsu, A., & Strachan, I. B. (2010). Modeling the surface energy budget during the thawing period of the 2006 montreal urban snow experiment. Journal of Applied Meteorology and Climatology, 49(1), 68–84.

Li, L., Zha, Y., & Wang, R. (2020). Relationship of surface urban heat island with air temperature and precipitation in global large cities. Ecological Indicators, 117.

Li, Y., Schubert, S., Kropp, J. P., & Rybski, D. (2020). On the influence of density and morphology on the Urban Heat Island intensity. Nature Communications, 11(1), 1-9.

Lin, C. Y., Chen, W. C., Chang, P. L., & Sheng, Y. F. (2011). Impact of the urban heat island effect on precipitation over a complex geographic environment in northern Taiwan. Journal of Applied Meteorology and Climatology, 50(2), 339–353.

Lolli, S., Di Girolamo, P., Demoz, B., Li, X., & Welton, E. J. (2017). Rain evaporation rate estimates from dual-wavelength Lidar measurements and Intercomparison against a model analytical solution. Journal of Atmospheric and Oceanic Technology, 34(4), 829–839.

Louiza, H., Zéroual, A., & Djamel, H. (2015). Impact of Transport on Urban Heat Island. International Journal for Traffic and Transport Engineering, 5(3), 252–263.

Malik, K. T., & Gupta, A. (2018, April). Open Green Spaces in Urban Indian Cities, Its Importance, Rapid Decline and Restoration Strategies. International Journal of Scientific Research and Review, 7(4), 178-186.

Mallick, J. (2021). Evaluation of seasonal characteristics of land surface temperature with NDVI and population density. Polish Journal of Environmental Studies, 30(4), 3163–3180.

Martin, P., Baudouin, Y., & Gachon, P. (2015). An alternative method to characterize the surface urban heat island. International Journal of Biometeorology, 59(7), 849–861.

Matsumoto, J., Fujibe, F., & Takahashi, H. (2017). Urban climate in the Tokyo metropolitan area in Japan. Journal of Environmental Sciences, 59, 54–62.

Mills, G. (2016). The Climate of London by Luke Howard (1833). International Association For Urban Climate.

Motanya, N. C., & Valera, P. (2016). Climate Change and Its Impact on the Incarcerated Population: A Descriptive Review. Social Work in Public Health, 31(5), 348–357.

Myhre, G., Alterskjær, K., Stjern, C. W., Hodnebrog, Marelle, L., Samset, B. H., Sillmann, J., Schaller, N., Fischer, E., Schulz, M., & Stohl, A. (2019). Frequency of extreme precipitation increases extensively with event rareness under global warming. Scientific Reports, 9(1).

Nuruzzaman, Md. (2015). Urban Heat Island: Causes, Effects and Mitigation Measures - A Review. International Journal of Environmental Monitoring and Analysis, 3(2), 67-73.

Ogunjobi, K. O., Adamu, Y., Akinsanola, A. A., & Orimoloye, I. R. (2018). Spatio-temporal analysis of land use dynamics and its potential indications on land surface temperature in Sokoto Metropolis, Nigeria. Royal Society Open Science, 5(12).

Oke, T. R. (1973). City Size and The Urban Heat Island. Atmospheric Environment, 7(8), 769–779.

Oke, T. R., & Maxwell, G. B. (1975). Urban Heat Island Dynamics in Montreal and Vancouver. Atmospheric Environment, 9(2), 191–200.

Oke, T. R., Mills, G., Christen, A., & Voogt, A. (2017). Urban Climates. Cambridge University Press.

Pal, S., & Ziaul, S. (2017). Detection of land use and land cover change and land surface temperature in English Bazar urban centre. The Egyptian Journal of Remote Sensing and Space Science, 20(1), 125–145.

Ramamurthy, P., & Bou-Zeid, E. (2017). Heatwaves and urban heat islands: A comparative analysis of multiple cities. Journal of Geophysical Research, 122(1), 168–178.

Ramírez-Aguilar, E. A., Lucas Souza, L. C., Ramírez-Aguilar, E. A., & Lucas Souza, L. C. (2019). Urban form and population density: Influences on Urban Heat Island intensities in Bogotá, Colombia. Urban Climate, 29, 100497.

Risser, M. D., & Wehner, M. F. (2017, December 12). Attributable Human-Induced Changes in the Likelihood and Magnitude of the Observed Extreme Precipitation during Hurricane Harvey. Geophysical Research Letters, 44(24), 12457-12464.

Russo, A., & Cirella, G. T. (2018). Modern compact cities: How much greenery do we need? International Journal of Environmental Research and Public Health, 15(10).

Sarbapriya, R., & Ishita, A. (2011). Impact of Population Growth on Environmental Degradation: Case of India. Journal of Economics and Sustainable Development, 2(8), 72-77. ISSN: 2222-1700

Sarkar, A., Saraswat, R. S., & Chandrasekar, A. (1998). Numerical study of the effects of urban heat island on the characteristic features of the sea breeze circulation. Earth Planet Science, 2, 127–137.

Shen, L., Wen, J., Zhang, Y., Ullah, S., Cheng, J., & Meng, X. (2022). Changes in population exposure to extreme precipitation in the Yangtze River Delta, China. Climate Services, 27, 100317.

Shepherd, J. M., & Burian, S. J. (2003). Detection of Urban-Induced Rainfall Anomalies in a Major Coastal City. Earth Interactions, 7(4), 1–17.<0001:douira>;2

Shepherd, J. M., Pierce, H., & Negri, A. J. (2002). Rainfall modification by major urban areas: Observations from spaceborne rain radar on the TRMM satellite. Journal of Applied Meteorology, 41(7), 689–701.<0689:RMBMUA>2.0.CO;2

Simpson, M., Raman, S., Suresh, R., & Mohanty, U. C. (2008). Urban effects of Chennai on sea breeze induced convection and precipitation. Journal of Earth System Science, 117(6), 897–909.

Steensen, B. M., Marelle, L., Hodnebrog, & Myhre, G. (2022). Future urban heat island influence on precipitation. Climate Dynamics, 58(11–12), 3393–3403.

Suthinkumar, P. S., Babu, C. A., & Varikoden, H. (2019). Spatial Distribution of Extreme Rainfall Events During 2017 Southwest Monsoon over Indian Subcontinent. Pure and Applied Geophysics, 176(12), 5431–5443.

Tan, J., Zheng, Y., Tang, X., Guo, C., Li, L., Song, G., Zhen, X., Yuan, D., Kalkstein, A. J., Li, F., & Chen, H. (2010). The urban heat island and its impact on heat waves and human health in Shanghai. International Journal of Biometeorology, 54(1), 75–84.

Tang, B., & Hu, W. (2022). Significant Increase in Population Exposure to Extreme Precipitation in South China and Indochina in the Future. Sustainability (Switzerland), 14(10).

Tran, D. X., Pla, F., Latorre-Carmona, P., Myint, S. W., Caetano, M., & Kieu, H. V. (2017). Characterizing the relationship between land use land cover change and land surface temperature. ISPRS Journal of Photogrammetry and Remote Sensing, 124, 119–132.

Wai, C. Y., Muttil, N., Tariq, M. A. U. R., Paresi, P., Nnachi, R. C., & Ng, A. W. M. (2022). Investigating the relationship between human activity and the urban heat island effect in Melbourne and four other international cities impacted by COVID-19. Sustainability (Switzerland), 14(1).

Xiao, J., Spicer, T., Jian, L., Yun, G. Y., Shao, C., Nairn, J., Fawcett, R. J. B., Robertson, A., & Weeramanthri, T. S. (2017). Variation in population vulnerability to heat wave in Western Australia. Frontiers in Public Health, 5.

Yamato, H., Mikami, T., & Takahashi, H. (2017). Impact of sea breeze penetration over urban areas on midsummer temperature distributions in the Tokyo Metropolitan area. International Journal of Climatology, 37(15), 5154–5169.

Yanai, M. E. S. C. J.-Hwa. (1972). Determination of Bulk Properties of Tropical Cloud Clusters from Large Scale Heat and Moisture Budgets. Journal of The Atmospheric Sciences, 30, 611–627.<0611:DOBPOT>2.0.CO;2

Yang, Z., Liu, P., & Yang, Y. (2019). Convective/Stratiform Precipitation classification using ground-based doppler radar data based on the K-nearest neighbour algorithm. Remote Sensing, 11(19).

Zhao, J. T., Su, B. Da, mondal, S. K., Wang, Y. J., Tao, H., & Jiang, T. (2021). Population exposure to precipitation extremes in the Indus River Basin at 1.5 °C, 2.0 °C and 3.0 °C warming levels. Advances in Climate Change Research, 12(2), 199–209.

Zhou, X., & Wang, Y. C. (2011). Dynamics of Land Surface Temperature in Response to Land-Use/Cover Change. Geographical Research, 49(1), 23–36.




How to Cite

Patil, R., & Surawar, M. (2023). Impact of Urban Heat Island on Formation of Precipitation in Indian Western Coastal Cities. Journal of Contemporary Urban Affairs, 7(2), 37–55.



Resilience and Built Environment