The Role of Advance Composite material In Contemporary Buildings

Main Article Content

Obasanjo Owoyale Adeola, Ph.D. Candidate
Mohammed Tauheed Alfa, Ph.D. Candidate


Composite materials have been used from the earliest times, from wood, which is a naturally occurring composite of lignin and cellulose, through straw reinforced clay bricks to reinforced concrete. In the 20th century, a new breed of composite materials was developed using polymer matrices with high performance reinforcement fibres. The great effect and uncompromising properties of advance composite materials has enabled the emergence of composites cut across all fields of application and all areas or work, just to mention a few aeronautic engineering, automobile engineering, and medicine, military and building construction. Therefore, with emphasis on building construction, advance composite material has played a vital role in today’s contemporary building construction method, by presenting its self as an alternative building construction material, its application has made the contemporary building construction much more flexible and achievable, compare to traditional building materials and its methods of construction. It further offers the building construction industry the technical know-how of having new possibilities of design styles, shapes and forms. Therefore, advance composite material proves it’s self to be a better and a new alternative building construction material that remains construction friendly and flexible based on its properties. This study therefore tends to provide an overview on advance composite material, its application as well as its role in today’s contemporary building.

Copyright © 2018 Journal of Contemporary Urban Affairs.


Download data is not yet available.

Article Metrics

Article Details

How to Cite
Adeola, O. O., & Tauheed Alfa, M. (2018). The Role of Advance Composite material In Contemporary Buildings. Journal of Contemporary Urban Affairs, 2(3), 95-101.


Akadiri, P. O., Chinyio, E. A., & Olomolaiye, P. O. (2012). Design of a sustainable building: A conceptual framework for implementing sustainability in the building sector. Buildings, 2(2), 126-152.

Berardi, U., & Dembsey, N. (2015). Thermal and Fire Characteristics of FRP Composites for Architectural Applications. Polymers, 7(11), 2276-2289.

Carney, P., & Myers, J. J. (2003). Shear and Flexural Strengthening of Masonry Infill Walls with FRP for Extreme Out-of-Plane Loading. Architectural Engineering 2003.

Chiewanichakorn, M., & Toranzo, L. (2011). Seismic Retrofit of St. Joseph Hospital Using Advanced Composite Materials for the Enhancement of Column, Slab, Wall and Beam Elements. Retrieved from:

Karbhari, V. M. (1998). Use of composite materials in civil infrastructure in Japan. WTEC report. International Technology Research Institute, World Technology (WTEC) Division. Available at:

Ljungberg, L. Y. (2007). Materials selection and design for development of sustainable products. Materials & Design, 28(2), 466-479.

Nguyen, Q., Mendis, P., Ngo, T., Tran, P., & Nguyen, C. (2013). Innovative materials for next generation façade systems. From Materials to Structures: Advancement through Innovation, 729-734.

Tagnit-hamou, A., & Soliman, N. (2018). U.S. Patent No. 9,856,171. Washington, DC: U.S. Patent and Trademark Office.

Wegst, U. G., Bai, H., Saiz, E., Tomsia, A. P., & Ritchie, R. O. (2015). Bioinspired structural materials. Nature materials, 14(1), 23.

Zabihi, S. (2010). Evaluating the Effects of Modern Movement on Contemporary Residential Buildings in Iran's Capital City-Tehran (Doctoral dissertation, Eastern Mediterranean University (EMU)). Available at:

Abstract 1389 | DOI